
11. NUMERICAL TECHNIQUES

Abstract — The sparse approximate inverse preconditioner
based on matrix entries (SPAI-ME) is developed to run in
parallel on the NVIDIA graphic cards. The column per warp
SPAI (CW-SPAI) algorithm proposed introduces new techniques
to overcome GPU programming limitations and enhance the
execution time of SPAI preconditioners on graphic cards.
Speedups of up to 18 times are achieved on the GPU compared to
CPU results and the convergence rate of the BiCGSTAB iterative
solver is enhanced more than 33 times for some matrices using
the preconditioner.

I. INTRODUCTION

In the past few decades the popularity of the finite element
method (FEM) has considerably increased in electromagnetic
simulations. The underlying linear system solution often
dominates the overall execution time in such methods and as
problem sizes grow larger and more complex, the design of
efficient methods to accelerate the solution of such systems is
inevitable. Iterative methods are a popular class of solvers for
sparse linear systems, and the use of good preconditioners that
can be efficiently computed in parallel are essential for such
solvers in order to enhance their convergence rate [1].

Sparse approximate inverse (SPAI) preconditioners
represent a class of methods tailored to improve the
performance of preconditioners on parallel multiprocessors.
The approximate inverse of A is computed and stored in the
preconditioner M and then applied to the iterative solver. The
computation of this preconditioner has been successfully
implemented in parallel for distributed computing systems [1]-
[5] but has not been accelerated on manycore architecture such
as graphic processing units (GPUs).

Since the introduction of general purpose programming on
graphic cards, GPUs have become an important computing
resource for scientific computing [6]. With peak performances
of up to 1.35 teraflops and easy to learn programming
interfaces such as CUDA [6], NVIDIA GPUs are an attractive
candidate to accelerate the computation of SPAI
preconditioners. In this work we present a new method called
column per warp SPAI (CW-SPAI), which proposes novel
techniques to parallelize sparse approximate inverse
preconditioners on GPUs.

II. THE SPARSE APPROXIMATE INVERSE PRECONDITIONER

The sparse approximate inverse is a popular class of
preconditioners which can be computed by minimizing the
frobenius norm of the residual matrix �� − � [2]. Columns of
M (mi) are calculated independently by constructing the small
system of equations ���� � =
̂� and then scattered back to M to
assemble the preconditioner. The hat over the variables
indicates that rows and columns are deleted from their original
matrix vectors according to a list Ni. Since the objective of this

work is to parallelize SPAI preconditioners based on matrix
entries (SPAI-ME) [2] the rows i in N are chosen based on a
specified tolerance (�) from the A matrix using the following
formula [5]:

���
 > �1 − �� max�
���
 (1)

Parallel implementations of SPAI across multiple
processors using MPI and OpenMP have been proposed in
previous works such as [1]-[5]. The computation of SPAI is
parallelized in these works by distributing the computation of
columns of M amongst different processors. Techniques such
as grouping communications [2], effective column partitioning
[1] and dictionary based methods [3] enhance the performance
of parallel SPAI on multiprocessors. The main disadvantage of
such methods besides the high cost of multiprocessors is the
distribution of A among different processors resulting in
considerable number of intra-processor communications.

GPUs are an attractive hardware platform for parallelizing
SPAI due to their massive multithreading, increased utilization
of large number of cores and access to an on-chip global
memory. While compute intensive kernels of iterative
methods such as SMVM [8], [9] have been calculated on the
GPU, to the best of our knowledge no work as been published
on accelerating SPAI preconditioners on graphic cards.

III. PARALLEL SPAI-ME ON GPUS

The NVIDIA GTX480 is classified as the new generation
of graphic cards called Fermi [6]. This graphic card contains
480 scalar processors grouped into 15 clusters named
streaming multiprocessors (SM) operating at 1.4 GHz. It has
access to a 1.5GB global memory, 768KB of L2 cache, and a
configurable 64KB memory divided between shared memory
and L1 cache. To run an application on the GPU, compute
intensive portions of the program should be sent to the GPU to
run in parallel. Each GPU kernel launches thousands of
threads grouped in to blocks. Several blocks are allocated to
each SM depending on the amount of shared memory
available and computed in clusters of 32-threads called warps.

The sparse approximate inverse based on matrix entries
(SPAI-ME) is generated in 4 steps for each column mi of M
independently as follows:

1. Row indices I of �� are chosen based on a user defined
parameter � and values of column i in A.

2. Row indices corresponding to columns I of A are loaded
and matched to find J, the number of columns in ��.

3. �� is constructed.
4. �� is decomposed using Gram-Schmidt QR [1].
5. ���� � =
̂� is solved using QR decomposition and a

backward solve and mi is then scattered back to M.

Accelerating Sparse Approximate Inverse Preconditioners based on
Matrix Entries on GPUs

Maryam Mehri Dehnavi, David M. Fernández, and Dennis Giannacopoulos
Department of Electrical & Computer Engineering, McGill University

3480 University Street, Montreal, Quebec H3A 2A7, Canada
maryam.mehridehnavi@mail.mcgill.ca, david.fernandezbecerra@mail.mcgill.ca, dennis.giannacopoulos@mcgill.ca

11. NUMERICAL TECHNIQUES

To parallelize SPAI-ME on graphic cards the above steps
should be efficiently implemented on the GPU. Major
limitations in accelerating SPAI on GPUs can be categorized
as: a) memory restrictions eg. static memory space allocation,
limited size of global and shared memory, long latency device
memory accesses, b) and sequential and tedious to parallelize
operations such as sorting and column matching during the
constructions of ��, inner products in QR decomposition and
the sequential solve in the last step.

The column per warp SPAI (CW-SPAI) algorithm
proposed in this work, introduces new techniques to
parallelize SPAI-ME on GPUs. CW-SPAI parallelizes the
construction of M by allocating the computation of each
column mi to one warp. Every 256 thread is grouped in to one
block and computes eight columns in parallel. Major
contributions and advantages of the proposed algorithm to
overcome some of the GPU programming limitations for
accelerating SPAI are as follows:

• M is constructed in parallel by allocating the
computation of each column mi to one warp. By limiting
the amount of shared memory used by each warp, the
number of blocks executing in parallel per SM are
increased to enhance parallelism.

• To coalesce memory accesses and hide shared and device
memory communication latencies, column values and
indices of A in steps 1 to 4 are loaded in parallel.

• Values satisfying the condition in step 1 are determined
in parallel and columns are matched to �� format
simultaneously in steps 2 and 3.

• In smaller matrices the �� is stored on shared memory to
increase the speed of the QR decomposition.

• For denser matrices with a large � parameter, the
arbitrary dimension of �� and the limited size of shared
memory requires storing �� in global memory. Since the
size of �� multiplied by the number of columns exceeds
the size of global memory for such problems, the
computation of M is divided between multiple kernels
allowing for memory reuse.

• Columns of the R matrix in the QR decomposition are
generated in parallel and dot products are computed using
parallel reduction techniques [8]. The computed columns
mi are also scattered to global memory in parallel.

• The cudaFuncCachePreferShared [6] option is used to
maximize the amount of shared memory on the GPU.

• While the iterative solver can run in double precision,
due to higher peak performances for single vs. double
precision computations on the GPU, M is calculated in
single precision.

This proposed method is tested on two FEM matrices [7]
namely s3dkt3m2 and s3dkq4m2 (Table I). The percentage of
time CW-SPAI (� = 0.9) spends in each step of the SPAI
algorithm is shown in Fig. 1. Due to the large number of
nonzeros in both matrices the �� matrix requires to be stored on
global memory, increasing device memory accesses and the
execution time of steps 2 to 4 in the algorithm (Fig. 1). The
relative speedup of the proposed method on NVIDIA GTX480
compared to SPAI 3.2 [5] CPU (Intel Core2 Quad 2.4GHZ)
results using optimization flags is presented in Table I. Since

the SPAI preconditioner is a better approximate of ��� with
larger � parameters [5], results are presented for � equal to 0.7
and 0.9. As shown speedups of up to 18 times compared to
CPU results are achieved using CW-SPAI.

0% 20% 40% 60% 80% 100%

s3
d
k
t3
m
2
s3
d
k
q
4
m
2 Find I (1) Find J (2) Construct Ahat (3) QR (4) Solve (5)

Fig. 1. Percentage of average execution time of the SPAI steps in CW-SPAI.

TABLE I
MATRIX PROPERTIES AND SPEEDUP (SU) OF GPU ACCELERATED

CW-SPAI COMPARED TO SPAI 3.2 [5] CPU RESULTS
Matrix Name nnz nnz/col SU

�� = 0.7�
SU

�� = 0.9�
s3dkt3m2 3,843,910 21 18 10
s3dkq4m2 4,911,340 27 9 8

The effects of using SPAI-ME preconditioners to enhance
the convergence rate of iterative solvers are presented in Table
II. Compared to a diagonal preconditioner, the generated SPAI
preconditioner with � equal to 0.9 and error tolerance of 1e-7
reduces the number of iterations in the BiCGSTAB iterative
solver 7 and 10 times for s3dkq4m2 and s3dkt3m2
respectively. When the tolerance is decreased to 1e-8, using
the produced SPAI preconditioner, s3dkt3m2 converges in
296 iterations while with a diagonal preconditioner the desired
tolerance is not achieved within 10,000 iterations.

TABLE II
ITERATION COUNTS FOR BICGSTAB USING THE SPAI-ME
PRECONDITIONER VS. DIAGONAL PRECONDITIONERS

Matrix
Name

s3dkq4m2
tol=1e-7

s3dkq4m2
tol=1e-8

s3dkt3m2
tol=1e-7

s3dkt3m2
tol=1e-8

Diagonal 527 1074 1478 >10000
SPAI 73 132 135 296
SU 7 8 10 >33

In the long version of the paper, implementation details of
the CW-SPAI algorithm will be presented and time consuming
sections of the code (Fig. 1) will be further optimized to run
faster on the GPUs. Methods of accelerating the BiCGSTAB
iterative solver on graphic cards will also be introduced.

IV. REFERENCES
[1] P. Raghavan et. al., “Parallel hybrid preconditioning: incomplete

factorization with selective sparse approximate inversion,” SIAM
Journal on Scientific Computing, vol.32, issue.3, pp. 1323-1345, 2010

[2] P. Gonzalez et. al., “Parallel sparse approximate preconditioners applied
to the solution of BEM systems,” Engineering Analysis with Boundary
Elements, vol.28, Issue.9, pp. 1061-1068, 2004.

[3] T. Huckle et. al., “An efficient parallel implementation of the MSPAI
preconditioner,” Parallel Computing, vol.36, Issue.6, pp. 273-284, 2010.

[4] G. Gravvanis, “High performance inverse preconditioning,” Archives of
Computational Methods in Eng., vol.16, issue.1, pp. 77-108, 2009.

[5] SPAI3.2, www.computational.unibas.ch/software/spai/spaidoc.html
[6] NVIDIA CUDA, http://developer.nvidia.com/object/cuda.html.
[7] Matrix market, http://math.nist.gov/MatrixMarket/, 2007.
[8] M. Mehri Dehnavi et. al., “Finite element sparse matrix vector

multiplication on GPUs,” IEEE Trans. on Mag., vol.46, no.8, pp. 2982-
2985, 2010.

[9] M. Mehri Dehnavi et. al., “Enhancing the Performance of Conjugate
Gradient Solvers on GPUs,” IEEE Trans. on Mag., to appear.

