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Abstract — The sparse approximate inverse preconditioner 
based on matrix entries (SPAI-ME) is developed to run in 
parallel on the NVIDIA graphic cards. The column per warp 
SPAI (CW-SPAI) algorithm proposed introduces new techniques 
to overcome GPU programming limitations and enhance the 
execution time of SPAI preconditioners on graphic cards.  
Speedups of up to 18 times are achieved on the GPU compared to 
CPU results and the convergence rate of the BiCGSTAB iterative 
solver is enhanced more than 33 times for some matrices using 
the preconditioner. 

I. INTRODUCTION 

In the past few decades the popularity of the finite element 
method (FEM) has considerably increased in electromagnetic 
simulations. The underlying linear system solution often 
dominates the overall execution time in such methods and as 
problem sizes grow larger and more complex, the design of 
efficient methods to accelerate the solution of such systems is 
inevitable. Iterative methods are a popular class of solvers for 
sparse linear systems, and the use of good preconditioners that 
can be efficiently computed in parallel are essential for such 
solvers in order to enhance their convergence rate [1]. 

Sparse approximate inverse (SPAI) preconditioners 
represent a class of methods tailored to improve the 
performance of preconditioners on parallel multiprocessors. 
The approximate inverse of A is computed and stored in the 
preconditioner M and then applied to the iterative solver. The 
computation of this preconditioner has been successfully 
implemented in parallel for distributed computing systems [1]-
[5] but has not been accelerated on manycore architecture such 
as graphic processing units (GPUs). 

Since the introduction of general purpose programming on 
graphic cards, GPUs have become an important computing 
resource for scientific computing [6]. With peak performances 
of up to 1.35 teraflops and easy to learn programming 
interfaces such as CUDA [6], NVIDIA GPUs are an attractive 
candidate to accelerate the computation of SPAI 
preconditioners. In this work we present a new method called 
column per warp SPAI (CW-SPAI), which proposes novel 
techniques to parallelize sparse approximate inverse 
preconditioners on GPUs.  

II. THE SPARSE APPROXIMATE INVERSE PRECONDITIONER 

The sparse approximate inverse is a popular class of 
preconditioners which can be computed by minimizing the 
frobenius norm of the residual matrix �� − � [2]. Columns of 
M (mi) are calculated independently by constructing the small 
system of equations ���� � = 
̂� and then scattered back to M to 
assemble the preconditioner. The hat over the variables 
indicates that rows and columns are deleted from their original 
matrix vectors according to a list Ni. Since the objective of this 

work is to parallelize SPAI preconditioners based on matrix 
entries (SPAI-ME) [2] the rows i in N are chosen based on a 
specified tolerance (�) from the A matrix using the following 
formula [5]:  


���
 > �1 − �� max�
���
                  (1) 

Parallel implementations of SPAI across multiple 
processors using MPI and OpenMP have been proposed in 
previous works such as [1]-[5]. The computation of SPAI is 
parallelized in these works by distributing the computation of 
columns of M amongst different processors. Techniques such 
as grouping communications [2], effective column partitioning 
[1] and dictionary based methods [3] enhance the performance 
of parallel SPAI on multiprocessors. The main disadvantage of 
such methods besides the high cost of multiprocessors is the 
distribution of A among different processors resulting in 
considerable number of intra-processor communications.  

GPUs are an attractive hardware platform for parallelizing 
SPAI due to their massive multithreading, increased utilization 
of large number of cores and access to an on-chip global 
memory. While compute intensive kernels of iterative 
methods such as SMVM [8], [9] have been calculated on the 
GPU, to the best of our knowledge no work as been published 
on accelerating SPAI preconditioners on graphic cards.  

III.  PARALLEL SPAI-ME ON GPUS 

The NVIDIA GTX480 is classified as the new generation 
of graphic cards called Fermi [6]. This graphic card contains 
480 scalar processors grouped into 15 clusters named 
streaming multiprocessors (SM) operating at 1.4 GHz. It has 
access to a 1.5GB global memory, 768KB of L2 cache, and a 
configurable 64KB memory divided between shared memory 
and L1 cache. To run an application on the GPU, compute 
intensive portions of the program should be sent to the GPU to 
run in parallel. Each GPU kernel launches thousands of 
threads grouped in to blocks. Several blocks are allocated to 
each SM depending on the amount of shared memory 
available and computed in clusters of 32-threads called warps.  

The sparse approximate inverse based on matrix entries 
(SPAI-ME) is generated in 4 steps for each column mi of M 
independently as follows:  

1. Row indices I of �� are chosen based on a user defined 
parameter � and values of column i in A. 

2. Row indices corresponding to columns I of A are loaded 
and matched to find J, the number of columns in  ��. 

3. �� is constructed.  
4. �� is decomposed using Gram-Schmidt QR [1]. 
5. ���� � = 
̂� is solved using QR decomposition and a 

backward solve and mi is then scattered back to M.  
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To parallelize SPAI-ME on graphic cards the above steps 
should be efficiently implemented on the GPU. Major 
limitations in accelerating SPAI on GPUs can be categorized 
as: a) memory restrictions eg. static memory space allocation, 
limited size of global and shared memory, long latency device 
memory accesses, b) and sequential and tedious to parallelize 
operations such as sorting and column matching during the 
constructions of ��, inner products in QR decomposition and 
the sequential solve in the last step. 

The column per warp SPAI (CW-SPAI) algorithm 
proposed in this work, introduces new techniques to 
parallelize SPAI-ME on GPUs. CW-SPAI parallelizes the 
construction of M by allocating the computation of each 
column mi to one warp. Every 256 thread is grouped in to one 
block and computes eight columns in parallel. Major 
contributions and advantages of the proposed algorithm to 
overcome some of the GPU programming limitations for 
accelerating SPAI are as follows: 

•  M is constructed in parallel by allocating the 
computation of each column mi to one warp. By limiting 
the amount of shared memory used by each warp, the 
number of blocks executing in parallel per SM are 
increased to enhance parallelism. 

• To coalesce memory accesses and hide shared and device 
memory communication latencies, column values and 
indices of A in steps 1 to 4 are loaded in parallel.  

• Values satisfying the condition in step 1 are determined 
in parallel and columns are matched to �� format 
simultaneously in steps 2 and 3.  

• In smaller matrices the �� is stored on shared memory to 
increase the speed of the QR decomposition.  

• For denser matrices with a large � parameter, the 
arbitrary dimension of �� and the limited size of shared 
memory requires storing �� in global memory. Since the 
size of �� multiplied by the number of columns exceeds 
the size of global memory for such problems, the 
computation of M is divided between multiple kernels 
allowing for memory reuse.     

• Columns of the R matrix in the QR decomposition are 
generated in parallel and dot products are computed using 
parallel reduction techniques [8]. The computed columns 
mi are also scattered to global memory in parallel.   

• The cudaFuncCachePreferShared [6] option is used to 
maximize the amount of shared memory on the GPU.  

• While the iterative solver can run in double precision, 
due to higher peak performances for single vs. double 
precision computations on the GPU, M is calculated in 
single precision. 

This proposed method is tested on two FEM matrices [7] 
namely s3dkt3m2 and s3dkq4m2 (Table I). The percentage of 
time CW-SPAI (� = 0.9) spends in each step of the SPAI 
algorithm is shown in Fig. 1. Due to the large number of 
nonzeros in both matrices the �� matrix requires to be stored on 
global memory, increasing device memory accesses and the 
execution time of steps 2 to 4 in the algorithm (Fig. 1).  The 
relative speedup of the proposed method on NVIDIA GTX480 
compared to SPAI 3.2 [5] CPU (Intel Core2 Quad 2.4GHZ) 
results using optimization flags is presented in Table I. Since 

the SPAI preconditioner is a better approximate of ��� with 
larger � parameters [5], results are presented for � equal to 0.7 
and 0.9. As shown speedups of up to 18 times compared to 
CPU results are achieved using CW-SPAI.   
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Fig. 1. Percentage of average execution time of the SPAI steps in CW-SPAI. 

TABLE I 
MATRIX PROPERTIES AND SPEEDUP (SU) OF GPU ACCELERATED 

CW-SPAI COMPARED TO SPAI 3.2 [5] CPU RESULTS  
Matrix Name nnz nnz/col SU 

�� = 0.7� 
SU  

�� = 0.9�     
s3dkt3m2 3,843,910 21 18 10 
s3dkq4m2 4,911,340 27 9 8 

The effects of using SPAI-ME preconditioners to enhance 
the convergence rate of iterative solvers are presented in Table 
II. Compared to a diagonal preconditioner, the generated SPAI 
preconditioner with � equal to 0.9 and error tolerance of 1e-7 
reduces the number of iterations in the BiCGSTAB iterative 
solver 7 and 10 times for s3dkq4m2 and s3dkt3m2 
respectively. When the tolerance is decreased to 1e-8, using 
the produced SPAI preconditioner, s3dkt3m2 converges in 
296 iterations while with a diagonal preconditioner the desired 
tolerance is not achieved within 10,000 iterations.  

TABLE II 
ITERATION COUNTS FOR BICGSTAB USING THE SPAI-ME 
PRECONDITIONER VS. DIAGONAL PRECONDITIONERS 

Matrix 
Name 

s3dkq4m2 
tol=1e-7 

s3dkq4m2 
tol=1e-8 

s3dkt3m2 
tol=1e-7 

s3dkt3m2 
tol=1e-8  

Diagonal 527 1074 1478 >10000 
SPAI 73 132 135 296 
SU 7 8 10 >33 

In the long version of the paper, implementation details of 
the CW-SPAI algorithm will be presented and time consuming 
sections of the code (Fig. 1) will be further optimized to run 
faster on the GPUs. Methods of accelerating the BiCGSTAB 
iterative solver on graphic cards will also be introduced. 
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