11. NUMERICAL TECHNIQUES

Accelerating Sparse Approximate Inverse Preconditiners based on
Matrix Entries on GPUs

Maryam Mehri Dehnavi, David M. Fernandend Dennis Giannacopoulos
Department of Electrical & Computer Engineering,®ilt University
3480 University Street, Montreal, Quebec H3A 2A@n&da
maryam.mehridehnavi@mail.mcgill.ca, david.fernamgerrra@ mail.mcgill.ca, dennis.giannacopoulos@rcagil

Abstract — The sparse approximate inverse precondibner
based on matrix entries (SPAI-ME) is developed to un in
parallel on the NVIDIA graphic cards. The column pe warp
SPAI (CW-SPAI) algorithm proposed introduces new tehniques
to overcome GPU programming limitations and enhancethe
execution time of SPAI preconditioners on graphic ards.
Speedups of up to 18 times are achieved on the GROmpared to
CPU results and the convergence rate of the BICGSTR\iterative
solver is enhanced more than 33 times for some mates using
the preconditioner.

. INTRODUCTION

In the past few decades the popularity of thedieiement
method (FEM) has considerably increased in elecgmatic
simulations. The underlying linear system solutioften
dominates the overall execution time in such meshad as
problem sizes grow larger and more complex, thegdesf
efficient methods to accelerate the solution ofhssgstems is
inevitable. Iterative methods are a popular cldssotvers for
sparse linear systems, and the use of good precmmels that
can be efficiently computed in parallel are esséritr such
solvers in order to enhance their convergence[thte

Sparse approximate inverse
represent a class of methods tailored to
performance of preconditioners on parallel multgassors.

The approximate inverse @f is computed and stored in the
preconditioneM and then applied to the iterative solver. The

computation of this preconditioner has been sudckgs
implemented in parallel for distributed computingtems [1]-
[5] but has not been accelerated on manycore aathie such
as graphic processing units (GPUSs).

Since the introduction of general purpose programynain

graphic cards, GPUs have become an important cangput

resource for scientific computing [6]. With peakfoemances

of up to 1.35 teraflops and easy to learn programgmi

interfaces such as CUDA [6], NVIDIA GPUs are amadtive
candidate to accelerate the computation of
preconditioners. In this work we present a new ettalled

column per warp SPAI (CW-SPAI), which proposes riov

techniques to parallelize
preconditioners on GPUs.

sparse approximate

Il. THE SPARSEAPPROXIMATE INVERSEPRECONDITIONER

The sparse approximate inverse is a popular cldss o

preconditioners which can be computed by minimizthg
frobenius norm of the residual maté¥ — I [2]. Columns of
M (m) are calculated independently by constructingsttmall
system of equationdm; = é; and then scattered backNbto
assemble the preconditioner. The hat over the bhiasa
indicates that rows and columns are deleted fragir triginal
matrix vectors according to a list. Since the objective of this

SP

work is to parallelize SPAI preconditioners based noatrix
entries (SPAI-ME) [2] the rowsin N are chosen based on a
specified tolerancer] from the A matrix using the following
formula [5]:

Parallel implementations of SPAI across multiple
processors using MPI and OpenMP have been propiosed
previous works such as [1]-[5]. The computationS&fAI is
parallelized in these works by distributing the ganation of
columns ofM amongst different processors. Techniques such
as grouping communications [2], effective columntiianing
[1] and dictionary based methods [3] enhance thiBpwaance
of parallel SPAI on multiprocessors. The main digadage of
such methods besides the high cost of multiprocedsothe
distribution of A among different processors resulting in
considerable number of intra-processor communioatio

GPUs are an attractive hardware platform for palialihg
SPAI due to their massive multithreading, increasization
of large number of cores and access to an on-clipab
memory. While compute intensive kernels of itemtiv

(SPAI) preconditionersethods such as SMVM [8], [9] have been calculatedhe
improve tiIGPU, to the best of our knowledge no work as bedsighed

on accelerating SPAI preconditioners on graphidar

Ill. PARALLEL SPAI-MEONGPUs

The NVIDIA GTX480 is classified as the new generati
of graphic cards called Fermi [6]. This graphiccdcapntains
480 scalar processors grouped into 15 clusters dhame
streaming multiprocessors (SM) operating at 1.4 GHhas
access to a 1.5GB global memory, 768KB of L2 caelne, a
configurable 64KB memory divided between shared orgm
and L1 cache. To run an application on the GPU, prgen
intensive portions of the program should be setii¢oGPU to
n in parallel. Each GPU kernel launches thousaofis
reads grouped in to blocks. Several blocks dmeaed to
each SM depending on the amount of shared memory

iIEWe;%savailable and computed in clusters of 32-threatlsccavarps.

The sparse approximate inverse based on matrixesntr

(SPAI-ME) is generated in 4 steps for each colummof M

independently as follows:

1. Row indicesl of A are chosen based on a user defined
parameter and values of columiin A.

2. Row indices corresponding to columinef A are loaded
and matched to find, the number of columns id.

3. Ais constructed.

4. Ais decomposed using Gram-Schn@R [1].

5. Am; = é; is solved usingQR decomposition and a
backward solve andh is then scattered back kd.

11. NUMERICAL TECHNIQUES

To parallelize SPAI-ME on graphic cards the abaeps the SPAI preconditioner is a better approximatedof with
should be efficiently implemented on the GPU. Majotargert parameters [5], results are presentedrfequal to 0.7
limitations in accelerating SPAI on GPUs can be=gatized and 0.9. As shown speedups of up to 18 times coedptar
as: a) memory restrictioreg). static memory space allocation,CPU results are achieved using CW-SPAI.
limited size of global and shared memory, longratedevice -
memory accesses, b) and sequential and tediouaratiglize
operations such as sorting and column matchingndutte !
constructions ofd, inner products irQR decomposition and |
the sequential solve in the last step. _

The column per warp SPAI (CW-SPAI) algorithm ;
proposed in this work, introduces new techniques ti '

parallelize SPAI-ME on GPUs. CW-SPAI parallelizase t 0% 20% 40% 60% 80% 100%

construction ofM by allocating the computation of each Fig. 1. Percentage of average execution time 0S®&l steps in CW-SPAI.
columnm, to one warp. Every 256 thread is grouped in to one

@FindI(1) OFindJ(2) B Construct Ahat(3) B QR (4) @ Solve (5):

s3dkt3m2 s3dkg4m?2

:) : TABLE |
block and computes eight columns in parallel. Major yaTrIx PROPERTIES AND SPEEDUP (SU) OF GPU ACCELERED
contributions and advantages of the proposed dlgorito CW-SPAI COMPARED TO SPAI 3.2 [5] CPU RESULTS
overcome some of the GPU programming limitations fo Matrix Name nnz nnzicol SU SU
accelerating SPAI are as follows: (1=0.7) (z=0.9)
« M is constructed in parallel by allocating the S3dki3m2 3,843,910 21 18 10
s3dkg4m2 4,911,340 27 9 8

computation of each columm, to one warp. By limiting
the amount of shared memory used by each warp, the The effects of using SPAI-ME preconditioners to amde
number of blocks executing in parallel per SM aréhe convergence rate of iterative solvers are ptesen Table
increased to enhance parallelism. Il. Compared to a diagonal preconditioner, the gateel SPAI

« To coalesce memory accesses and hide shared aice deRreconditioner withr equal to 0.9 and error tolerance of 1e-7
memory communication |atenciesy column values arf@duces the number of iterations in the BiCGSTA&ative

indices ofA in steps 1 to 4 are loaded in parallel. solver

7 and 10 times for s3dkq4m2 and s3dkt3m2

« Values satisfying the condition in step 1 are deieed espectively. When the tolerance is decreased 8, lising

in parallel and columns are matched # format
simultaneously in steps 2 and 3.

* In smaller matrices thd is stored on shared memory to
increase the speed of thR decomposition.

e For denser matrices with a large parameter, the

the produced SPAI preconditioner, s3dkt3m2 conwerie
296 iterations while with a diagonal preconditiottez desired
tolerance is not achieved within 10,000 iterations.

TABLE Il
ITERATION COUNTS FOR BICGSTAB USING THE SPAI-ME
PRECONDITIONER VS. DIAGONAL PRECONDITIONERS

arbitrary dimension ofi and the limited size of shared
memory requires storing in global memory. Since the

Matrix s3dkgdm2 s3dkg4m2 s3dkt3m2 s3dkt3m2

A Name tol=1e-7 tol=1e-8 tol=1e-7 tol=1e-8
size of A multiplied by the number of columns exceeds Diagonal 527 1074 1478 >10000
the size of global memory for such problems, the SPAI 773 1832 11035 ;3?5

>,

computation ofM is divided between multiple kernels
allowing for memory reuse.

n the long version of the paper, implementatiotaie of

+ Columns of theR matrix in theQR decomposition are the CW-SPAI algorithm will be presented and timesuming
generated in parallel and dot products are compusgdy sections of the code (Fig. 1) will be furthe_r optied to run
para||e| reduction techniques [8] The Computedjn‘[ﬂs faster on the GPUs. Methods of acceleratlng theGBTAB

m; are also scattered to g|oba| memory in para||e|_ iterative solver on graphic cards will also bednlced.

* The cudaFuncCachePreferShared [6] option is used to
maximize the amount of shared memory on the GPU.

¢ While the iterative solver can run in double priegis [1]
due to higher peak performances for single vs. oub
precision computations on the GPM, is calculated in

IV. REFERENCES

P. Raghavanet. al., “Parallel hybrid preconditioning: incomplete
factorization with selective sparse approximate efgion,” S AM
Journal on Scientific Computing, vol.32, issue.3, pp. 1323-1345, 2010

. . [2] P. Gonzalezt. al., “Parallel sparse approximate preconditionersiagpl
single precision. to the solution of BEM systemsEngineering Analysis with Boundary
; ; Elements, vol.28, Issue.9, pp. 1061-1068, 2004.
This proposed method is tested on two FEM matiegs [8] T. Huckleet. al., “An efficient parallel implementation of the MSPA

namely s3dkt3m2 and s3dkg4m?2 (Table I). The peacgnbf
time CW-SPAI ¢ = 0.9) spends in each step of the SPAI4]
algorithm is shown in Fig. 1. Due to the large nemiof

nonzeros in both matrices tiematrix requires to be stored on%
global memory, increasing device memory accesséstlz® [7]
execution time of steps 2 to 4 in the algorithmg(Ai). The [g]
relative speedup of the proposed method on NVIDIPX&80
compared to SPAI 3.2 [5] CPU (Intel Core2 Quad MHZpH

9
results using optimization flags is presented ibl&d. Since Bl

preconditioner,’Parallel Computing, vol.36, Issue.6, pp. 273-284, 2010.
G. Gravvanis, “High performance inverse preconditig,” Archives of
Computational Methods in Eng., vol.16, issue.1, pp. 77-108, 2009.
SPAI3.2, www.computational.unibas.ch/software/spaiidoc.html
NVIDIA CUDA, http://developer.nvidia.com/object/da.html.

Matrix market, http://math.nist.gov/MatrixMarke2007.

M. Mehri Dehnavi et. al., “Finite element sparse matrix vector
multiplication on GPUs,|EEE Trans. on Mag., vol.46, no.8, pp. 2982-
2985, 2010.

M. Mehri Dehnaviet. al., “Enhancing the Performance of Conjugate
Gradient Solvers on GPU4EEE Trans. on Mag., to appear.

